可调谐激光器简介工作原理以及校准

  可调谐激光器tunable laser 是指在一定范围内可以连续改变激光输出波长的激光器(见激光)。这种激光器的用途广泛,可用于光谱学、光化学、医学、生物学、集成光学、污染监测、半导体材料加工、信息处理和通信等。
可调谐激光器简介工作原理以及校准
  简介
 可调谐激光器与其他传统的固态激光器相比,具有从近紫外到近红外的宽波段调谐范围,并且其本身尺寸小、线宽窄和光学效率高,这使其在单芯片实验室、医学诊断、皮肤医学等领域具有重要的应用前景。
 工作原理
 实现激光波长调谐的原理大致有三种。大多数可调谐激光器都使用具有宽的荧光谱线的工作物质。构成激光器的谐振腔只在很窄的波长范围内才有很低的损耗。因此,第一种是通过某些元件(如光栅)改变谐振腔低损耗区所对应的波长来改变激光的波长。第二种是通过改变某些外界参数(如磁场、温度等)使激光跃迁的能级移动。第三种是利用非线性效应实现波长的变换和调谐(见非线性光学、受激喇曼散射、光二倍频,光参量振荡)。属于第一种调谐方式的典型激光器有染料激光器、金绿宝石激光器、色心激光器、可调谐高压气体激光器和可调谐准分子激光器。
  发展历史
世界上第一台激光器,螺旋式氛灯泵浦的红宝石激光器问世后不久,脉冲可调谐染料激光器于1966年,由F.P.Sehsfer等人首先研制成功,四年后才由0.G.Peterson等人报导了第一台连续波染料激光运转,当时作为唯一的连续可调谐激光材料,染料激光得到了充分的发展,至八十年代形成一个高潮。
八十年代中,由于新型可调谐固体激光材料掺钦宝石(Ti:Sapphire,Ti:AloO3)的问世,吸引很多染料激光研究者包括研制染料激光器的公司转向到掺钦宝石激光的研究和生产中,就1993年度全球激光市场销售情况和1994年市场预测趋势盾,染料激光的市场主要集中在激光医疗和科学研究两个领域,其市场需求及销售额远低于固体激光器(不仅仅可调谐固体激光器),仅为后者的1/20左右,而且呈下降趋势。相反,固体激光,特别是半导体激光泵浦的全固体化激光器,不仅市场广阔,几乎遍及所有激光应用领域,市场需求量及销售额大,而且呈大幅度上涨趋势。
1975年一1978年我国先后研制出Nd,YAG激光器和闪光灯泵浦的脉冲式可调谐染料激光器。1981年研制成功连续波可调谐环形染料激光器,并形成系列化产品,其最新换代产品也是微机控制的自动扫描环形染料激光器,我国的超短脉冲染料激光技术(21飞秒)居世界领先水平。
1990年左右我国已生长出掺钦宝石晶体,并报导了用自己生长的晶体完成了脉冲,连续,准连续掺钦宝石激光运转,目前国产优质掺钦宝石晶体的品质因数可达200一300,掺杂浓度可高达4  在488nm波长处,应当说国内掺钦宝石激光的研究尚处开始阶段,但发展十分迅速,仅仅几年时间,已利用自聚焦锁模技术得到了184fs掺铁宝石激光运转,和92fs掺铁宝石激光运转,可以预期不远的将来,与世界先进水平的差距将大大缩小。
1993年,V.Petircevic等人报导了据说是世界上第一台被普遍认为是成功的  激光运转,当时尚未采用半导体激光泵浦。1994年度实现半导体激光泵浦掺  全固体激光运转。 
 技术分类
可调谐激光器从实现技术上看主要分为:电流控制技术、温度控制技术和机械控制技术等类型。
其中电控技术是通过改变注入电流实现波长的调谐,具有ns级调谐速度,较宽的调谐带宽,但输出功率较小,基于电控技术的主要有SG-DBR(采样光栅DBR)和GCSR(辅助光栅定向耦合背向取样反射)激光器。温控技术是通过改变激光器有源区折射率,从而改变激光器输出波长的。该技术简单,但速度慢,可调带宽窄,只有几个nm。基于温控技术的主要有DFB(分布反馈)和DBR(分布布喇格反射)激光器。机械控制主要是基于MEMS(微机电系统)技术完成波长的选择,具有较大的可调带宽、较高的输出功率。基于机械控制技术的主要有DFB(分布反馈)、ECL(外腔激光器)和VCSEL(垂直腔表面发射激光器)等结构。下面从这几个方面可调谐激光器的原理进行说明。
基于电流控制技术
基于电流控制技术的一般原理是通过改变可调谐激光器内不同位置的光纤光栅和相位控制部分的电流,从而使光纤光栅的相对折射率会发生变化,产生不同的光谱,通过不同区域光纤光栅产生的不同光谱的叠加进行特定波长的选择,从而产生需要的特定波长的激光。
一种基于电流控制技术的可调谐激光器采用SGDBR(Sampled Grating Distributed Bragg Reflector)结构。
该类型的激光器主要分为半导体放大区、前布喇格光栅区、激活区、相位调整区和后布拉格光栅区。其中前布喇格光栅区、相位调整区和后布喇格光栅区分别通过不同的电流来改变该区域的分子分布结构,从而改变布喇格光栅的周期特性。
对于在激活区(Active)产生的光谱,分别在前布喇格光栅区和后布喇格光栅区形成频率分布有较小差异的光谱。对于需要的特定波长的激光,可调谐激光器分别对前布喇格光栅和后布喇格光栅施加不同电流,使得在这两个区域产生只有此特定波长重叠其他波长不重叠的光谱,从而使需要的特定波长能够输出。同时该种激光器还包含半导体放大器区,使输出的特定波长的激光光功率达到100mW或者20mW。
基于机械控制技术
基于机械控制技术一般采用MEMS来实现。一种基于机械控制技术的可调谐激光器采用MEMs-DFB结构。
可调谐激光器主要包括DFB激光器阵列、可倾斜的MEMs镜片和其他控制与辅助部分。
对于DFB激光器阵列区存在若干个DFB激光器阵列,每个阵列可以产生带宽约为1.0nm内的间隔为25Ghz的特定波长。通过控制MEMs镜片旋转角度来对需要的特定波长进行选择,从而输出需要的特定波长的光。
另一种基于VCSEL结构ML系列系列的可调谐激光器,其设计基于光泵浦垂直腔面发射激光器,采用半对称腔技术,利用MEMS实现连续的波长调谐。同时通过此方法可得到大的输出光功率和宽光谱调谐范围,热敏电阻和TEC封装在一起,以便在宽的温度范围内具有稳定的输出。为了精确频率控制一个宽带波长控制器被集成同一管壳内,前端分接光功率检测器及光隔离器用于提供稳定的输出功率。这种可调激光器可以在C波段和L波段提供10/20mW光功率。
对于这种原理的可调谐激光器主要缺点是调谐时间比较慢,一般需要几秒的调谐稳定时间。
基于温度控制技术
基于温度控制技术主要应用在DFB结构中,其原理在于调整激光腔内温度,从而可以使之发射不同的波长。
一种基于该原理技术的可调激光器的波长调节是依靠控制InGaAsP DFB激光器工作在-5–50℃的变化实现的。模块内置有FP标准具和光功率检测,连续光输出的激光可被锁定在ITU规定的50GHz间隔的栅格上。模块内有两个独立的TEC,一个用来控制激光器的波长,另一个用来保证模块内的波长锁定器和功率检测探测器恒温工作。模块还内置有SOA来放大输出光功率。
这种控制技术的缺点是单个模块的调谐的宽度不宽,一般只有几个nm,而且调谐时间比较长,一般需要几秒的调谐稳定时间。
目前可调谐激光器基本上均采用电流控制技术、温度控制技术或机械控制技术,有的供应商可能会采用这些技术的一种或两种。当然随着技术的发展,也可能会出现其他新的可调谐激光器控制技术。
 可调谐激光器校准选择品信检测,品信检测2016年通过了中国合格评定国家认可委员会(CNAS)的认可,认可证书号:L9269。2015年通过当地质量技术监督局的考核,并建立了企业最高计量标准。目前已拥有电学、无线电、几何量、热学、力学、化学、电力高压检测计量等各领域专业技术,以“为客户提供专业、精准、经济、快速的服务”为宗旨,开展相应专业仪器的校准、检测、销售、维修及人员培训工作。公司秉承其科学、公正、准确、高效的计量理念,信守“科学公正、客户至上”的承诺,利用先进的计量标准仪器设备和精湛的测试技术,竭诚为每一位客户提供高质量的服务。通过不断努力,建标30多项,CNAS项目 500多项,项目电力高压 生物制药 消防气体综合实力位居民营第一,。现有员工100多人,2019已在全国各省建立分公司30多个。
 
 
 

相关新闻

联系我们

热 线 0755-23596580

韦先生181-4586-7746

黄小姐189-2744-1877

在线咨询点击这里给我发消息

在线报价

邮件:tkuaile@yeah.net

工作时间:周一至周日,9:30-22:30,节假日不休

联系微信
联系微信
分享本页
返回顶部