惠州电量校正,误差范围与误差合成          

 

(一)误差量的特点     

    误差,表明测得值与实际值(被测量的真值)的差距。误差是个泛指的概念,包括误差元与误差范围两个概念。

 

    误差元等于测得值减真值。误差元是误差概念的基本单元,表明误差的物理意义与计算方法,是误差理论的基础。但对一项测量计量的表达对象,误差元是可正可负、有大有小的量,不便直接表达与应用。

    误差量的特点是它的上限性。

 

取误差元的绝对值,就去掉了误差元的正负号;取误差元的绝对值的一定概率(99%)意义下的最大可能值,就把误差元的多个可能值,变成了一个值,这个值就是误差范围。

 

    误差范围体现了误差量的特点,简单、够用;它被应用于研制、计量、测量三大场合。研制是用计量标准与物理机制建立仪器的误差范围;计量靠计量标准检验、公证仪器的误差范围;测量是利用误差范围。

 

人们用经过计量合格的测量仪器进行测量,在得到测得值的同时,知道了该测得值的误差范围不超过测量仪器误差范围的指标值,只要测量仪器的误差范围指标满足要求,人们就得到了够格的测量结果,达到了测量的目的。

    将误差元变成误差范围,称为误差合成。误差合成的任务就是两条:去掉诸误差元的正负号;找到诸误差元共同作用产生的总误差元的绝对值的最大可能值。

 

    一般量的特点是“双限性”,就是不能过大,也不能过小。而误差量不同,对误差量的要求是不能过大,而越小越好,这是误差量的“上限性”。因为误差元有正有负,所谓误差大、误差小,是只论绝对值,而不管正负号。

 

仪器校验 考虑、选取误差合成的方案,特别要注意误差量的上限性。本书基于误差量“上限性”的特点,提出“取绝对和好”的判断。

 

(二)误差范围与两个区间          

    通常的函数关系,是函数与自变量一一对应。测量计量理论的函数关系,却是一个自变量对应函数的一个区间。误差范围是函数区间的半宽。

    误差元等于测得值减真值;误差范围是误差元的绝对值的一定概率意义下的最大可能值。有这两个定义,第4章推导了两个区间的公式。

    研制、计量中用的测得值区间为:

          Z-R ≤ M ≤ Z+R                                        (4.9)

    Z是被测量的量值(真值),M是测得值,R是误差范围。

    测量中用的被测量量值区间为:

          M-R ≤ Z ≤ M+R                                       (4.15)

    以上两个区间公式,即测得值公式与真值公式,是把误差范围的定义的最大值符号max去掉推导的结果,表明区间中全部量值点的关系,物理意义明确,表达完备。另有一种最常用的表达方式,那就是着眼点于区间边界点,而得出的公式,有最简洁的形式,而实际内容,与上二式等效。推导时不去掉最大值符号max,着眼点于区间边界,即只用等号。

 

 

 

 

相关新闻

联系我们

热 线 0755-27784155

电 话180-2695-0976

在线咨询点击这里给我发消息

在线报价

邮件:1981004853@qq.com

工作时间:周一至周五,8:30-18:00

联系微信
联系微信
分享本页
返回顶部